世新大學九十三學年度碩博士班考試試題卷

財務金融學系

統計學

※考生請於答案卷內作答

 

Part A 填充題:請順序填寫答案,標明題號,不需列出計算過程。共55

 

I. Two players, A and B, alternatively and independently flip a coin, with probability 1/3 obtain a head. The rule is that the first player to obtain a head wins. Who will flip first is decide by flipping another coin, with probability 2/3 to obtain a head; if the outcome is head, then A flips first, otherwise, B flips first. What is the probability that A wins ? (1)                                                  (10%)

 

II. Consider the regression model  where ’s are iid . The regression equation  is obtained. After algebra, results are as follows : ,

(a)    R2= (2)                                             (5%)

(b)   Provide a test statistics value (3) for testing H0:a0 =1.         (5%)

(c)    Provide a test statistics value (4) for testing H0:a2-a1=1.       (5%)

 

III. The joint pmf is given as follows:

 

                      X=1          X=2           X=3

               ------------------------------------------------------------

               Y=0   0.10           0.05          0.10

               Y=1   0.15           0.20          0.10

               Y=2   0.05           0.15          0.10

              --------------------------------------------------------------

(a) Find the conditional expectation function (5)       (5%)

(b) Find the covariance between X and Y, Cov(X,Y) =(6)            (5%)

(c) Find the correlation coefficient between X and Y, =(7)     (5%)

 

IV. X1,X2,,Xn為一組來自常態母體之隨機樣本。令分別為MLE。則=(8) 之抽樣分配為(9) 之抽樣分配為(10)  (15%)

 

Part B 計算題:請順序答題,計算過程擇重點列出,共45

I 台灣股市大盤自1991年至2000年,其第一季(X )及第三季(Y)之各季季報酬如下:

   

 

第一季   第三季

 

第一季   第三季

1991

1992

1993

1994

1995

0.24                        -0.13

0.01                        -0.20

0.43                        -0.03

-0.17      0.19

-0.07      -0.05

1996

1997

1998

1999

2000

-0.00       0.00

0.20       -0.03

0.11       -0.14

0.14       -0.10

0.15       -0.27

設各季之季報酬率互相獨立,分別是為從兩個常態母體所隨機抽取之樣本。而且

(a)試檢定               (10%)

(b)試檢定                   (10%)

 

II. There suppliers provide the following data on defective parts

                   Part   Quality

 

Supplier

Good

Minor Defective

Major Defective

A

B

C

90

180

160

3

8

19

7

12

21

 Use =0.05 and test for independence between supplier and part quality. What dose result of your analysis tell the purchasing department?               (15%)

 

III. X and Y are two random variables, such that both and exist,

  

(a)    Show that.                      (5%)

(b)   Show that                    (5%)

 

                  -----The end ------

                      Tables

 

 

df

8

9

10

18

19

20

=0.05

a

1.860

1.833

1.815

1.734

1.729

1.725

=0.025

a

2.306

2.262

2.228

2.101

2.093

2.086

 

df

1

2

3

4

5

6

a

3.84

5.99

7.81

9.49

11.07

12.59

 

=0.05

(m,n)

(8,8)

(9,9)

(10,10)

=0.025

(m,n)

(8,8)

(9,9)

(10,10)

3.44

3.18

2.98

4.43

4.03

3.72